The synthetic division table is:
$$ \begin{array}{c|rrrr}-5&2&5&18&45\\& & -10& 25& \color{black}{-215} \\ \hline &\color{blue}{2}&\color{blue}{-5}&\color{blue}{43}&\color{orangered}{-170} \end{array} $$The solution is:
$$ \frac{ 2x^{3}+5x^{2}+18x+45 }{ x+5 } = \color{blue}{2x^{2}-5x+43} \color{red}{~-~} \frac{ \color{red}{ 170 } }{ x+5 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 5 = 0 $ ( $ x = \color{blue}{ -5 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&2&5&18&45\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-5&\color{orangered}{ 2 }&5&18&45\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 2 } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&2&5&18&45\\& & \color{blue}{-10} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrr}-5&2&\color{orangered}{ 5 }&18&45\\& & \color{orangered}{-10} & & \\ \hline &2&\color{orangered}{-5}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ \left( -5 \right) } = \color{blue}{ 25 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&2&5&18&45\\& & -10& \color{blue}{25} & \\ \hline &2&\color{blue}{-5}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 18 } + \color{orangered}{ 25 } = \color{orangered}{ 43 } $
$$ \begin{array}{c|rrrr}-5&2&5&\color{orangered}{ 18 }&45\\& & -10& \color{orangered}{25} & \\ \hline &2&-5&\color{orangered}{43}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ 43 } = \color{blue}{ -215 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-5}&2&5&18&45\\& & -10& 25& \color{blue}{-215} \\ \hline &2&-5&\color{blue}{43}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 45 } + \color{orangered}{ \left( -215 \right) } = \color{orangered}{ -170 } $
$$ \begin{array}{c|rrrr}-5&2&5&18&\color{orangered}{ 45 }\\& & -10& 25& \color{orangered}{-215} \\ \hline &\color{blue}{2}&\color{blue}{-5}&\color{blue}{43}&\color{orangered}{-170} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}-5x+43 } $ with a remainder of $ \color{red}{ -170 } $.