The synthetic division table is:
$$ \begin{array}{c|rrrr}3&2&-3&18&-15\\& & 6& 9& \color{black}{81} \\ \hline &\color{blue}{2}&\color{blue}{3}&\color{blue}{27}&\color{orangered}{66} \end{array} $$The solution is:
$$ \frac{ 2x^{3}-3x^{2}+18x-15 }{ x-3 } = \color{blue}{2x^{2}+3x+27} ~+~ \frac{ \color{red}{ 66 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&2&-3&18&-15\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ 2 }&-3&18&-15\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 2 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&2&-3&18&-15\\& & \color{blue}{6} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 6 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}3&2&\color{orangered}{ -3 }&18&-15\\& & \color{orangered}{6} & & \\ \hline &2&\color{orangered}{3}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 3 } = \color{blue}{ 9 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&2&-3&18&-15\\& & 6& \color{blue}{9} & \\ \hline &2&\color{blue}{3}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 18 } + \color{orangered}{ 9 } = \color{orangered}{ 27 } $
$$ \begin{array}{c|rrrr}3&2&-3&\color{orangered}{ 18 }&-15\\& & 6& \color{orangered}{9} & \\ \hline &2&3&\color{orangered}{27}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 27 } = \color{blue}{ 81 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&2&-3&18&-15\\& & 6& 9& \color{blue}{81} \\ \hline &2&3&\color{blue}{27}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -15 } + \color{orangered}{ 81 } = \color{orangered}{ 66 } $
$$ \begin{array}{c|rrrr}3&2&-3&18&\color{orangered}{ -15 }\\& & 6& 9& \color{orangered}{81} \\ \hline &\color{blue}{2}&\color{blue}{3}&\color{blue}{27}&\color{orangered}{66} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}+3x+27 } $ with a remainder of $ \color{red}{ 66 } $.