The synthetic division table is:
$$ \begin{array}{c|rrrr}9&2&-1&-16&-9\\& & 18& 153& \color{black}{1233} \\ \hline &\color{blue}{2}&\color{blue}{17}&\color{blue}{137}&\color{orangered}{1224} \end{array} $$The solution is:
$$ \frac{ 2x^{3}-x^{2}-16x-9 }{ x-9 } = \color{blue}{2x^{2}+17x+137} ~+~ \frac{ \color{red}{ 1224 } }{ x-9 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -9 = 0 $ ( $ x = \color{blue}{ 9 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{9}&2&-1&-16&-9\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}9&\color{orangered}{ 2 }&-1&-16&-9\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 2 } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&2&-1&-16&-9\\& & \color{blue}{18} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 18 } = \color{orangered}{ 17 } $
$$ \begin{array}{c|rrrr}9&2&\color{orangered}{ -1 }&-16&-9\\& & \color{orangered}{18} & & \\ \hline &2&\color{orangered}{17}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 17 } = \color{blue}{ 153 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&2&-1&-16&-9\\& & 18& \color{blue}{153} & \\ \hline &2&\color{blue}{17}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -16 } + \color{orangered}{ 153 } = \color{orangered}{ 137 } $
$$ \begin{array}{c|rrrr}9&2&-1&\color{orangered}{ -16 }&-9\\& & 18& \color{orangered}{153} & \\ \hline &2&17&\color{orangered}{137}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 9 } \cdot \color{blue}{ 137 } = \color{blue}{ 1233 } $.
$$ \begin{array}{c|rrrr}\color{blue}{9}&2&-1&-16&-9\\& & 18& 153& \color{blue}{1233} \\ \hline &2&17&\color{blue}{137}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 1233 } = \color{orangered}{ 1224 } $
$$ \begin{array}{c|rrrr}9&2&-1&-16&\color{orangered}{ -9 }\\& & 18& 153& \color{orangered}{1233} \\ \hline &\color{blue}{2}&\color{blue}{17}&\color{blue}{137}&\color{orangered}{1224} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}+17x+137 } $ with a remainder of $ \color{red}{ 1224 } $.