The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&2&13&-4&-14\\& & -2& -11& \color{black}{15} \\ \hline &\color{blue}{2}&\color{blue}{11}&\color{blue}{-15}&\color{orangered}{1} \end{array} $$The solution is:
$$ \frac{ 2x^{3}+13x^{2}-4x-14 }{ x+1 } = \color{blue}{2x^{2}+11x-15} ~+~ \frac{ \color{red}{ 1 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&2&13&-4&-14\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ 2 }&13&-4&-14\\& & & & \\ \hline &\color{orangered}{2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 2 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&2&13&-4&-14\\& & \color{blue}{-2} & & \\ \hline &\color{blue}{2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 13 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ 11 } $
$$ \begin{array}{c|rrrr}-1&2&\color{orangered}{ 13 }&-4&-14\\& & \color{orangered}{-2} & & \\ \hline &2&\color{orangered}{11}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 11 } = \color{blue}{ -11 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&2&13&-4&-14\\& & -2& \color{blue}{-11} & \\ \hline &2&\color{blue}{11}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ \left( -11 \right) } = \color{orangered}{ -15 } $
$$ \begin{array}{c|rrrr}-1&2&13&\color{orangered}{ -4 }&-14\\& & -2& \color{orangered}{-11} & \\ \hline &2&11&\color{orangered}{-15}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -15 \right) } = \color{blue}{ 15 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&2&13&-4&-14\\& & -2& -11& \color{blue}{15} \\ \hline &2&11&\color{blue}{-15}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ 15 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}-1&2&13&-4&\color{orangered}{ -14 }\\& & -2& -11& \color{orangered}{15} \\ \hline &\color{blue}{2}&\color{blue}{11}&\color{blue}{-15}&\color{orangered}{1} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x^{2}+11x-15 } $ with a remainder of $ \color{red}{ 1 } $.