The synthetic division table is:
$$ \begin{array}{c|rrrrr}1&4&0&2&-1&-10\\& & 4& 4& 6& \color{black}{5} \\ \hline &\color{blue}{4}&\color{blue}{4}&\color{blue}{6}&\color{blue}{5}&\color{orangered}{-5} \end{array} $$The solution is:
$$ \frac{ 4x^{4}+2x^{2}-x-10 }{ x-1 } = \color{blue}{4x^{3}+4x^{2}+6x+5} \color{red}{~-~} \frac{ \color{red}{ 5 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&0&2&-1&-10\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}1&\color{orangered}{ 4 }&0&2&-1&-10\\& & & & & \\ \hline &\color{orangered}{4}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&0&2&-1&-10\\& & \color{blue}{4} & & & \\ \hline &\color{blue}{4}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 4 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rrrrr}1&4&\color{orangered}{ 0 }&2&-1&-10\\& & \color{orangered}{4} & & & \\ \hline &4&\color{orangered}{4}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 4 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&0&2&-1&-10\\& & 4& \color{blue}{4} & & \\ \hline &4&\color{blue}{4}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ 4 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrrr}1&4&0&\color{orangered}{ 2 }&-1&-10\\& & 4& \color{orangered}{4} & & \\ \hline &4&4&\color{orangered}{6}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 6 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&0&2&-1&-10\\& & 4& 4& \color{blue}{6} & \\ \hline &4&4&\color{blue}{6}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -1 } + \color{orangered}{ 6 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrrr}1&4&0&2&\color{orangered}{ -1 }&-10\\& & 4& 4& \color{orangered}{6} & \\ \hline &4&4&6&\color{orangered}{5}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 5 } = \color{blue}{ 5 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{1}&4&0&2&-1&-10\\& & 4& 4& 6& \color{blue}{5} \\ \hline &4&4&6&\color{blue}{5}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ -10 } + \color{orangered}{ 5 } = \color{orangered}{ -5 } $
$$ \begin{array}{c|rrrrr}1&4&0&2&-1&\color{orangered}{ -10 }\\& & 4& 4& 6& \color{orangered}{5} \\ \hline &\color{blue}{4}&\color{blue}{4}&\color{blue}{6}&\color{blue}{5}&\color{orangered}{-5} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 4x^{3}+4x^{2}+6x+5 } $ with a remainder of $ \color{red}{ -5 } $.