The synthetic division table is:
$$ \begin{array}{c|rrr}-2&2&3&-24\\& & -4& \color{black}{2} \\ \hline &\color{blue}{2}&\color{blue}{-1}&\color{orangered}{-22} \end{array} $$The solution is:
$$ \frac{ 2x^{2}+3x-24 }{ x+2 } = \color{blue}{2x-1} \color{red}{~-~} \frac{ \color{red}{ 22 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&3&-24\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-2&\color{orangered}{ 2 }&3&-24\\& & & \\ \hline &\color{orangered}{2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 2 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&3&-24\\& & \color{blue}{-4} & \\ \hline &\color{blue}{2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -1 } $
$$ \begin{array}{c|rrr}-2&2&\color{orangered}{ 3 }&-24\\& & \color{orangered}{-4} & \\ \hline &2&\color{orangered}{-1}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&3&-24\\& & -4& \color{blue}{2} \\ \hline &2&\color{blue}{-1}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -24 } + \color{orangered}{ 2 } = \color{orangered}{ -22 } $
$$ \begin{array}{c|rrr}-2&2&3&\color{orangered}{ -24 }\\& & -4& \color{orangered}{2} \\ \hline &\color{blue}{2}&\color{blue}{-1}&\color{orangered}{-22} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x-1 } $ with a remainder of $ \color{red}{ -22 } $.