The synthetic division table is:
$$ \begin{array}{c|rrr}-2&2&-6&-20\\& & -4& \color{black}{20} \\ \hline &\color{blue}{2}&\color{blue}{-10}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 2x^{2}-6x-20 }{ x+2 } = \color{blue}{2x-10} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&-6&-20\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-2&\color{orangered}{ 2 }&-6&-20\\& & & \\ \hline &\color{orangered}{2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 2 } = \color{blue}{ -4 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&-6&-20\\& & \color{blue}{-4} & \\ \hline &\color{blue}{2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -6 } + \color{orangered}{ \left( -4 \right) } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrr}-2&2&\color{orangered}{ -6 }&-20\\& & \color{orangered}{-4} & \\ \hline &2&\color{orangered}{-10}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ 20 } $.
$$ \begin{array}{c|rrr}\color{blue}{-2}&2&-6&-20\\& & -4& \color{blue}{20} \\ \hline &2&\color{blue}{-10}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -20 } + \color{orangered}{ 20 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}-2&2&-6&\color{orangered}{ -20 }\\& & -4& \color{orangered}{20} \\ \hline &\color{blue}{2}&\color{blue}{-10}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x-10 } $ with a remainder of $ \color{red}{ 0 } $.