The synthetic division table is:
$$ \begin{array}{c|rrr}2&2&-13&18\\& & 4& \color{black}{-18} \\ \hline &\color{blue}{2}&\color{blue}{-9}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 2x^{2}-13x+18 }{ x-2 } = \color{blue}{2x-9} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -2 = 0 $ ( $ x = \color{blue}{ 2 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&-13&18\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}2&\color{orangered}{ 2 }&-13&18\\& & & \\ \hline &\color{orangered}{2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ 2 } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&-13&18\\& & \color{blue}{4} & \\ \hline &\color{blue}{2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -13 } + \color{orangered}{ 4 } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrr}2&2&\color{orangered}{ -13 }&18\\& & \color{orangered}{4} & \\ \hline &2&\color{orangered}{-9}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 2 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -18 } $.
$$ \begin{array}{c|rrr}\color{blue}{2}&2&-13&18\\& & 4& \color{blue}{-18} \\ \hline &2&\color{blue}{-9}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 18 } + \color{orangered}{ \left( -18 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}2&2&-13&\color{orangered}{ 18 }\\& & 4& \color{orangered}{-18} \\ \hline &\color{blue}{2}&\color{blue}{-9}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 2x-9 } $ with a remainder of $ \color{red}{ 0 } $.