The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&27&0&-3&5\\& & -54& 108& \color{black}{-210} \\ \hline &\color{blue}{27}&\color{blue}{-54}&\color{blue}{105}&\color{orangered}{-205} \end{array} $$The solution is:
$$ \frac{ 27x^{3}-3x+5 }{ x+2 } = \color{blue}{27x^{2}-54x+105} \color{red}{~-~} \frac{ \color{red}{ 205 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&27&0&-3&5\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ 27 }&0&-3&5\\& & & & \\ \hline &\color{orangered}{27}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 27 } = \color{blue}{ -54 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&27&0&-3&5\\& & \color{blue}{-54} & & \\ \hline &\color{blue}{27}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -54 \right) } = \color{orangered}{ -54 } $
$$ \begin{array}{c|rrrr}-2&27&\color{orangered}{ 0 }&-3&5\\& & \color{orangered}{-54} & & \\ \hline &27&\color{orangered}{-54}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -54 \right) } = \color{blue}{ 108 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&27&0&-3&5\\& & -54& \color{blue}{108} & \\ \hline &27&\color{blue}{-54}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 108 } = \color{orangered}{ 105 } $
$$ \begin{array}{c|rrrr}-2&27&0&\color{orangered}{ -3 }&5\\& & -54& \color{orangered}{108} & \\ \hline &27&-54&\color{orangered}{105}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 105 } = \color{blue}{ -210 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&27&0&-3&5\\& & -54& 108& \color{blue}{-210} \\ \hline &27&-54&\color{blue}{105}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ \left( -210 \right) } = \color{orangered}{ -205 } $
$$ \begin{array}{c|rrrr}-2&27&0&-3&\color{orangered}{ 5 }\\& & -54& 108& \color{orangered}{-210} \\ \hline &\color{blue}{27}&\color{blue}{-54}&\color{blue}{105}&\color{orangered}{-205} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 27x^{2}-54x+105 } $ with a remainder of $ \color{red}{ -205 } $.