The synthetic division table is:
$$ \begin{array}{c|rr}0&224&0\\& & \color{black}{0} \\ \hline &\color{blue}{224}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ 224x }{ x } = \color{blue}{224} $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rr}\color{blue}{0}&224&0\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}0&\color{orangered}{ 224 }&0\\& & \\ \hline &\color{orangered}{224}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 224 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rr}\color{blue}{0}&224&0\\& & \color{blue}{0} \\ \hline &\color{blue}{224}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rr}0&224&\color{orangered}{ 0 }\\& & \color{orangered}{0} \\ \hline &\color{blue}{224}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 224 } $ with a remainder of $ \color{red}{ 0 } $.