The synthetic division table is:
$$ \begin{array}{c|rr}3&-14&2\\& & \color{black}{-42} \\ \hline &\color{blue}{-14}&\color{orangered}{-40} \end{array} $$The solution is:
$$ \frac{ -14x+2 }{ x-3 } = \color{blue}{-14} \color{red}{~-~} \frac{ \color{red}{ 40 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{3}&-14&2\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}3&\color{orangered}{ -14 }&2\\& & \\ \hline &\color{orangered}{-14}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -14 \right) } = \color{blue}{ -42 } $.
$$ \begin{array}{c|rr}\color{blue}{3}&-14&2\\& & \color{blue}{-42} \\ \hline &\color{blue}{-14}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 2 } + \color{orangered}{ \left( -42 \right) } = \color{orangered}{ -40 } $
$$ \begin{array}{c|rr}3&-14&\color{orangered}{ 2 }\\& & \color{orangered}{-42} \\ \hline &\color{blue}{-14}&\color{orangered}{-40} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -14 } $ with a remainder of $ \color{red}{ -40 } $.