The synthetic division table is:
$$ \begin{array}{c|rr}-2&1&0\\& & \color{black}{-2} \\ \hline &\color{blue}{1}&\color{orangered}{-2} \end{array} $$The solution is:
$$ \frac{ x }{ x+2 } = \color{blue}{1} \color{red}{~-~} \frac{ \color{red}{ 2 } }{ x+2 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{-2}&1&0\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}-2&\color{orangered}{ 1 }&0\\& & \\ \hline &\color{orangered}{1}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 1 } = \color{blue}{ -2 } $.
$$ \begin{array}{c|rr}\color{blue}{-2}&1&0\\& & \color{blue}{-2} \\ \hline &\color{blue}{1}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -2 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rr}-2&1&\color{orangered}{ 0 }\\& & \color{orangered}{-2} \\ \hline &\color{blue}{1}&\color{orangered}{-2} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 1 } $ with a remainder of $ \color{red}{ -2 } $.