The synthetic division table is:
$$ \begin{array}{c|rr}3&81&-83\\& & \color{black}{243} \\ \hline &\color{blue}{81}&\color{orangered}{160} \end{array} $$The solution is:
$$ \frac{ 81x-83 }{ x-3 } = \color{blue}{81} ~+~ \frac{ \color{red}{ 160 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{3}&81&-83\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}3&\color{orangered}{ 81 }&-83\\& & \\ \hline &\color{orangered}{81}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ 81 } = \color{blue}{ 243 } $.
$$ \begin{array}{c|rr}\color{blue}{3}&81&-83\\& & \color{blue}{243} \\ \hline &\color{blue}{81}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -83 } + \color{orangered}{ 243 } = \color{orangered}{ 160 } $
$$ \begin{array}{c|rr}3&81&\color{orangered}{ -83 }\\& & \color{orangered}{243} \\ \hline &\color{blue}{81}&\color{orangered}{160} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 81 } $ with a remainder of $ \color{red}{ 160 } $.