The synthetic division table is:
$$ \begin{array}{c|rrrrr}5&-1&3&0&-14&32\\& & -5& -10& -50& \color{black}{-320} \\ \hline &\color{blue}{-1}&\color{blue}{-2}&\color{blue}{-10}&\color{blue}{-64}&\color{orangered}{-288} \end{array} $$The solution is:
$$ \frac{ -x^{4}+3x^{3}-14x+32 }{ x-5 } = \color{blue}{-x^{3}-2x^{2}-10x-64} \color{red}{~-~} \frac{ \color{red}{ 288 } }{ x-5 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -5 = 0 $ ( $ x = \color{blue}{ 5 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{5}&-1&3&0&-14&32\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}5&\color{orangered}{ -1 }&3&0&-14&32\\& & & & & \\ \hline &\color{orangered}{-1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ -5 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{5}&-1&3&0&-14&32\\& & \color{blue}{-5} & & & \\ \hline &\color{blue}{-1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ \left( -5 \right) } = \color{orangered}{ -2 } $
$$ \begin{array}{c|rrrrr}5&-1&\color{orangered}{ 3 }&0&-14&32\\& & \color{orangered}{-5} & & & \\ \hline &-1&\color{orangered}{-2}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{5}&-1&3&0&-14&32\\& & -5& \color{blue}{-10} & & \\ \hline &-1&\color{blue}{-2}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ -10 } $
$$ \begin{array}{c|rrrrr}5&-1&3&\color{orangered}{ 0 }&-14&32\\& & -5& \color{orangered}{-10} & & \\ \hline &-1&-2&\color{orangered}{-10}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ \left( -10 \right) } = \color{blue}{ -50 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{5}&-1&3&0&-14&32\\& & -5& -10& \color{blue}{-50} & \\ \hline &-1&-2&\color{blue}{-10}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -14 } + \color{orangered}{ \left( -50 \right) } = \color{orangered}{ -64 } $
$$ \begin{array}{c|rrrrr}5&-1&3&0&\color{orangered}{ -14 }&32\\& & -5& -10& \color{orangered}{-50} & \\ \hline &-1&-2&-10&\color{orangered}{-64}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 5 } \cdot \color{blue}{ \left( -64 \right) } = \color{blue}{ -320 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{5}&-1&3&0&-14&32\\& & -5& -10& -50& \color{blue}{-320} \\ \hline &-1&-2&-10&\color{blue}{-64}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 32 } + \color{orangered}{ \left( -320 \right) } = \color{orangered}{ -288 } $
$$ \begin{array}{c|rrrrr}5&-1&3&0&-14&\color{orangered}{ 32 }\\& & -5& -10& -50& \color{orangered}{-320} \\ \hline &\color{blue}{-1}&\color{blue}{-2}&\color{blue}{-10}&\color{blue}{-64}&\color{orangered}{-288} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -x^{3}-2x^{2}-10x-64 } $ with a remainder of $ \color{red}{ -288 } $.