The synthetic division table is:
$$ \begin{array}{c|rrrr}1&-1&7&11&5\\& & -1& 6& \color{black}{17} \\ \hline &\color{blue}{-1}&\color{blue}{6}&\color{blue}{17}&\color{orangered}{22} \end{array} $$The solution is:
$$ \frac{ -x^{3}+7x^{2}+11x+5 }{ x-1 } = \color{blue}{-x^{2}+6x+17} ~+~ \frac{ \color{red}{ 22 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{1}&-1&7&11&5\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}1&\color{orangered}{ -1 }&7&11&5\\& & & & \\ \hline &\color{orangered}{-1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&-1&7&11&5\\& & \color{blue}{-1} & & \\ \hline &\color{blue}{-1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 7 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}1&-1&\color{orangered}{ 7 }&11&5\\& & \color{orangered}{-1} & & \\ \hline &-1&\color{orangered}{6}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 6 } = \color{blue}{ 6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&-1&7&11&5\\& & -1& \color{blue}{6} & \\ \hline &-1&\color{blue}{6}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 11 } + \color{orangered}{ 6 } = \color{orangered}{ 17 } $
$$ \begin{array}{c|rrrr}1&-1&7&\color{orangered}{ 11 }&5\\& & -1& \color{orangered}{6} & \\ \hline &-1&6&\color{orangered}{17}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 17 } = \color{blue}{ 17 } $.
$$ \begin{array}{c|rrrr}\color{blue}{1}&-1&7&11&5\\& & -1& 6& \color{blue}{17} \\ \hline &-1&6&\color{blue}{17}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 17 } = \color{orangered}{ 22 } $
$$ \begin{array}{c|rrrr}1&-1&7&11&\color{orangered}{ 5 }\\& & -1& 6& \color{orangered}{17} \\ \hline &\color{blue}{-1}&\color{blue}{6}&\color{blue}{17}&\color{orangered}{22} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -x^{2}+6x+17 } $ with a remainder of $ \color{red}{ 22 } $.