The synthetic division table is:
$$ \begin{array}{c|rrrr}-2&-1&-9&-9&10\\& & 2& 14& \color{black}{-10} \\ \hline &\color{blue}{-1}&\color{blue}{-7}&\color{blue}{5}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ -x^{3}-9x^{2}-9x+10 }{ x+2 } = \color{blue}{-x^{2}-7x+5} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 2 = 0 $ ( $ x = \color{blue}{ -2 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&-1&-9&-9&10\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-2&\color{orangered}{ -1 }&-9&-9&10\\& & & & \\ \hline &\color{orangered}{-1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 2 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&-1&-9&-9&10\\& & \color{blue}{2} & & \\ \hline &\color{blue}{-1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 2 } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrrr}-2&-1&\color{orangered}{ -9 }&-9&10\\& & \color{orangered}{2} & & \\ \hline &-1&\color{orangered}{-7}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ 14 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&-1&-9&-9&10\\& & 2& \color{blue}{14} & \\ \hline &-1&\color{blue}{-7}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -9 } + \color{orangered}{ 14 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrrr}-2&-1&-9&\color{orangered}{ -9 }&10\\& & 2& \color{orangered}{14} & \\ \hline &-1&-7&\color{orangered}{5}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -2 } \cdot \color{blue}{ 5 } = \color{blue}{ -10 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-2}&-1&-9&-9&10\\& & 2& 14& \color{blue}{-10} \\ \hline &-1&-7&\color{blue}{5}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 10 } + \color{orangered}{ \left( -10 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-2&-1&-9&-9&\color{orangered}{ 10 }\\& & 2& 14& \color{orangered}{-10} \\ \hline &\color{blue}{-1}&\color{blue}{-7}&\color{blue}{5}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -x^{2}-7x+5 } $ with a remainder of $ \color{red}{ 0 } $.