The synthetic division table is:
$$ \begin{array}{c|rrrr}-7&-1&-7&0&6\\& & 7& 0& \color{black}{0} \\ \hline &\color{blue}{-1}&\color{blue}{0}&\color{blue}{0}&\color{orangered}{6} \end{array} $$The solution is:
$$ \frac{ -x^{3}-7x^{2}+6 }{ x+7 } = \color{blue}{-x^{2}} ~+~ \frac{ \color{red}{ 6 } }{ x+7 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 7 = 0 $ ( $ x = \color{blue}{ -7 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&-1&-7&0&6\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-7&\color{orangered}{ -1 }&-7&0&6\\& & & & \\ \hline &\color{orangered}{-1}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 7 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&-1&-7&0&6\\& & \color{blue}{7} & & \\ \hline &\color{blue}{-1}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 7 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-7&-1&\color{orangered}{ -7 }&0&6\\& & \color{orangered}{7} & & \\ \hline &-1&\color{orangered}{0}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&-1&-7&0&6\\& & 7& \color{blue}{0} & \\ \hline &-1&\color{blue}{0}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-7&-1&-7&\color{orangered}{ 0 }&6\\& & 7& \color{orangered}{0} & \\ \hline &-1&0&\color{orangered}{0}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -7 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-7}&-1&-7&0&6\\& & 7& 0& \color{blue}{0} \\ \hline &-1&0&\color{blue}{0}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 6 } + \color{orangered}{ 0 } = \color{orangered}{ 6 } $
$$ \begin{array}{c|rrrr}-7&-1&-7&0&\color{orangered}{ 6 }\\& & 7& 0& \color{orangered}{0} \\ \hline &\color{blue}{-1}&\color{blue}{0}&\color{blue}{0}&\color{orangered}{6} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -x^{2} } $ with a remainder of $ \color{red}{ 6 } $.