The synthetic division table is:
$$ \begin{array}{c|rrr}-5&-2&-11&-5\\& & 10& \color{black}{5} \\ \hline &\color{blue}{-2}&\color{blue}{-1}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ -2x^{2}-11x-5 }{ x+5 } = \color{blue}{-2x-1} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 5 = 0 $ ( $ x = \color{blue}{ -5 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{-5}&-2&-11&-5\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}-5&\color{orangered}{ -2 }&-11&-5\\& & & \\ \hline &\color{orangered}{-2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 10 } $.
$$ \begin{array}{c|rrr}\color{blue}{-5}&-2&-11&-5\\& & \color{blue}{10} & \\ \hline &\color{blue}{-2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -11 } + \color{orangered}{ 10 } = \color{orangered}{ -1 } $
$$ \begin{array}{c|rrr}-5&-2&\color{orangered}{ -11 }&-5\\& & \color{orangered}{10} & \\ \hline &-2&\color{orangered}{-1}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -5 } \cdot \color{blue}{ \left( -1 \right) } = \color{blue}{ 5 } $.
$$ \begin{array}{c|rrr}\color{blue}{-5}&-2&-11&-5\\& & 10& \color{blue}{5} \\ \hline &-2&\color{blue}{-1}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -5 } + \color{orangered}{ 5 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrr}-5&-2&-11&\color{orangered}{ -5 }\\& & 10& \color{orangered}{5} \\ \hline &\color{blue}{-2}&\color{blue}{-1}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -2x-1 } $ with a remainder of $ \color{red}{ 0 } $.