The synthetic division table is:
$$ \begin{array}{c|rrrr}3&-2&-3&-2&9\\& & -6& -27& \color{black}{-87} \\ \hline &\color{blue}{-2}&\color{blue}{-9}&\color{blue}{-29}&\color{orangered}{-78} \end{array} $$The solution is:
$$ \frac{ -2x^{3}-3x^{2}-2x+9 }{ x-3 } = \color{blue}{-2x^{2}-9x-29} \color{red}{~-~} \frac{ \color{red}{ 78 } }{ x-3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -3 = 0 $ ( $ x = \color{blue}{ 3 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{3}&-2&-3&-2&9\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}3&\color{orangered}{ -2 }&-3&-2&9\\& & & & \\ \hline &\color{orangered}{-2}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ -6 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&-2&-3&-2&9\\& & \color{blue}{-6} & & \\ \hline &\color{blue}{-2}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ \left( -6 \right) } = \color{orangered}{ -9 } $
$$ \begin{array}{c|rrrr}3&-2&\color{orangered}{ -3 }&-2&9\\& & \color{orangered}{-6} & & \\ \hline &-2&\color{orangered}{-9}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ -27 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&-2&-3&-2&9\\& & -6& \color{blue}{-27} & \\ \hline &-2&\color{blue}{-9}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -2 } + \color{orangered}{ \left( -27 \right) } = \color{orangered}{ -29 } $
$$ \begin{array}{c|rrrr}3&-2&-3&\color{orangered}{ -2 }&9\\& & -6& \color{orangered}{-27} & \\ \hline &-2&-9&\color{orangered}{-29}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 3 } \cdot \color{blue}{ \left( -29 \right) } = \color{blue}{ -87 } $.
$$ \begin{array}{c|rrrr}\color{blue}{3}&-2&-3&-2&9\\& & -6& -27& \color{blue}{-87} \\ \hline &-2&-9&\color{blue}{-29}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ \left( -87 \right) } = \color{orangered}{ -78 } $
$$ \begin{array}{c|rrrr}3&-2&-3&-2&\color{orangered}{ 9 }\\& & -6& -27& \color{orangered}{-87} \\ \hline &\color{blue}{-2}&\color{blue}{-9}&\color{blue}{-29}&\color{orangered}{-78} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -2x^{2}-9x-29 } $ with a remainder of $ \color{red}{ -78 } $.