The synthetic division table is:
$$ \begin{array}{c|rrrr}-1&-4&-3&1&0\\& & 4& -1& \color{black}{0} \\ \hline &\color{blue}{-4}&\color{blue}{1}&\color{blue}{0}&\color{orangered}{0} \end{array} $$The solution is:
$$ \frac{ -4x^{3}-3x^{2}+x }{ x+1 } = \color{blue}{-4x^{2}+x} $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&-4&-3&1&0\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}-1&\color{orangered}{ -4 }&-3&1&0\\& & & & \\ \hline &\color{orangered}{-4}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ 4 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&-4&-3&1&0\\& & \color{blue}{4} & & \\ \hline &\color{blue}{-4}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ 4 } = \color{orangered}{ 1 } $
$$ \begin{array}{c|rrrr}-1&-4&\color{orangered}{ -3 }&1&0\\& & \color{orangered}{4} & & \\ \hline &-4&\color{orangered}{1}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 1 } = \color{blue}{ -1 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&-4&-3&1&0\\& & 4& \color{blue}{-1} & \\ \hline &-4&\color{blue}{1}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 1 } + \color{orangered}{ \left( -1 \right) } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-1&-4&-3&\color{orangered}{ 1 }&0\\& & 4& \color{orangered}{-1} & \\ \hline &-4&1&\color{orangered}{0}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{-1}&-4&-3&1&0\\& & 4& -1& \color{blue}{0} \\ \hline &-4&1&\color{blue}{0}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}-1&-4&-3&1&\color{orangered}{ 0 }\\& & 4& -1& \color{orangered}{0} \\ \hline &\color{blue}{-4}&\color{blue}{1}&\color{blue}{0}&\color{orangered}{0} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -4x^{2}+x } $ with a remainder of $ \color{red}{ 0 } $.