The synthetic division table is:
$$ \begin{array}{c|rr}-1&9&-29\\& & \color{black}{-9} \\ \hline &\color{blue}{9}&\color{orangered}{-38} \end{array} $$The solution is:
$$ \frac{ 9x-29 }{ x+1 } = \color{blue}{9} \color{red}{~-~} \frac{ \color{red}{ 38 } }{ x+1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 1 = 0 $ ( $ x = \color{blue}{ -1 } $ ) at the left.
$$ \begin{array}{c|rr}\color{blue}{-1}&9&-29\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}-1&\color{orangered}{ 9 }&-29\\& & \\ \hline &\color{orangered}{9}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -1 } \cdot \color{blue}{ 9 } = \color{blue}{ -9 } $.
$$ \begin{array}{c|rr}\color{blue}{-1}&9&-29\\& & \color{blue}{-9} \\ \hline &\color{blue}{9}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -29 } + \color{orangered}{ \left( -9 \right) } = \color{orangered}{ -38 } $
$$ \begin{array}{c|rr}-1&9&\color{orangered}{ -29 }\\& & \color{orangered}{-9} \\ \hline &\color{blue}{9}&\color{orangered}{-38} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 9 } $ with a remainder of $ \color{red}{ -38 } $.