The synthetic division table is:
$$ \begin{array}{c|rrrrr}-3&1&-3&0&-3&0\\& & -3& 18& -54& \color{black}{171} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{18}&\color{blue}{-57}&\color{orangered}{171} \end{array} $$The solution is:
$$ \frac{ x^{4}-3x^{3}-3x }{ x+3 } = \color{blue}{x^{3}-6x^{2}+18x-57} ~+~ \frac{ \color{red}{ 171 } }{ x+3 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x + 3 = 0 $ ( $ x = \color{blue}{ -3 } $ ) at the left.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&-3&0&-3&0\\& & & & & \\ \hline &&&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrrr}-3&\color{orangered}{ 1 }&-3&0&-3&0\\& & & & & \\ \hline &\color{orangered}{1}&&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 1 } = \color{blue}{ -3 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&-3&0&-3&0\\& & \color{blue}{-3} & & & \\ \hline &\color{blue}{1}&&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ \left( -3 \right) } = \color{orangered}{ -6 } $
$$ \begin{array}{c|rrrrr}-3&1&\color{orangered}{ -3 }&0&-3&0\\& & \color{orangered}{-3} & & & \\ \hline &1&\color{orangered}{-6}&&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -6 \right) } = \color{blue}{ 18 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&-3&0&-3&0\\& & -3& \color{blue}{18} & & \\ \hline &1&\color{blue}{-6}&&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 18 } = \color{orangered}{ 18 } $
$$ \begin{array}{c|rrrrr}-3&1&-3&\color{orangered}{ 0 }&-3&0\\& & -3& \color{orangered}{18} & & \\ \hline &1&-6&\color{orangered}{18}&& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ 18 } = \color{blue}{ -54 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&-3&0&-3&0\\& & -3& 18& \color{blue}{-54} & \\ \hline &1&-6&\color{blue}{18}&& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -3 } + \color{orangered}{ \left( -54 \right) } = \color{orangered}{ -57 } $
$$ \begin{array}{c|rrrrr}-3&1&-3&0&\color{orangered}{ -3 }&0\\& & -3& 18& \color{orangered}{-54} & \\ \hline &1&-6&18&\color{orangered}{-57}& \end{array} $$Step 8 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ -3 } \cdot \color{blue}{ \left( -57 \right) } = \color{blue}{ 171 } $.
$$ \begin{array}{c|rrrrr}\color{blue}{-3}&1&-3&0&-3&0\\& & -3& 18& -54& \color{blue}{171} \\ \hline &1&-6&18&\color{blue}{-57}& \end{array} $$Step 9 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 171 } = \color{orangered}{ 171 } $
$$ \begin{array}{c|rrrrr}-3&1&-3&0&-3&\color{orangered}{ 0 }\\& & -3& 18& -54& \color{orangered}{171} \\ \hline &\color{blue}{1}&\color{blue}{-6}&\color{blue}{18}&\color{blue}{-57}&\color{orangered}{171} \end{array} $$Bottom line represents the quotient $ \color{blue}{ x^{3}-6x^{2}+18x-57 } $ with a remainder of $ \color{red}{ 171 } $.