The synthetic division table is:
$$ \begin{array}{c|rrr}0&-3&-4&-4\\& & 0& \color{black}{0} \\ \hline &\color{blue}{-3}&\color{blue}{-4}&\color{orangered}{-4} \end{array} $$The solution is:
$$ \frac{ -3x^{2}-4x-4 }{ x } = \color{blue}{-3x-4} \color{red}{~-~} \frac{ \color{red}{ 4 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&-3&-4&-4\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ -3 }&-4&-4\\& & & \\ \hline &\color{orangered}{-3}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -3 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-3&-4&-4\\& & \color{blue}{0} & \\ \hline &\color{blue}{-3}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 0 } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrr}0&-3&\color{orangered}{ -4 }&-4\\& & \color{orangered}{0} & \\ \hline &-3&\color{orangered}{-4}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -4 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-3&-4&-4\\& & 0& \color{blue}{0} \\ \hline &-3&\color{blue}{-4}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -4 } + \color{orangered}{ 0 } = \color{orangered}{ -4 } $
$$ \begin{array}{c|rrr}0&-3&-4&\color{orangered}{ -4 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{-3}&\color{blue}{-4}&\color{orangered}{-4} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -3x-4 } $ with a remainder of $ \color{red}{ -4 } $.