The synthetic division table is:
$$ \begin{array}{c|rr}0&5&4\\& & \color{black}{0} \\ \hline &\color{blue}{5}&\color{orangered}{4} \end{array} $$The solution is:
$$ \frac{ 5x+4 }{ x } = \color{blue}{5} ~+~ \frac{ \color{red}{ 4 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rr}\color{blue}{0}&5&4\\& & \\ \hline && \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rr}0&\color{orangered}{ 5 }&4\\& & \\ \hline &\color{orangered}{5}& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 5 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rr}\color{blue}{0}&5&4\\& & \color{blue}{0} \\ \hline &\color{blue}{5}& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 4 } + \color{orangered}{ 0 } = \color{orangered}{ 4 } $
$$ \begin{array}{c|rr}0&5&\color{orangered}{ 4 }\\& & \color{orangered}{0} \\ \hline &\color{blue}{5}&\color{orangered}{4} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 5 } $ with a remainder of $ \color{red}{ 4 } $.