The synthetic division table is:
$$ \begin{array}{c|rrr}0&3&-7&9\\& & 0& \color{black}{0} \\ \hline &\color{blue}{3}&\color{blue}{-7}&\color{orangered}{9} \end{array} $$The solution is:
$$ \frac{ 3x^{2}-7x+9 }{ x } = \color{blue}{3x-7} ~+~ \frac{ \color{red}{ 9 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&3&-7&9\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ 3 }&-7&9\\& & & \\ \hline &\color{orangered}{3}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 3 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&3&-7&9\\& & \color{blue}{0} & \\ \hline &\color{blue}{3}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ -7 } + \color{orangered}{ 0 } = \color{orangered}{ -7 } $
$$ \begin{array}{c|rrr}0&3&\color{orangered}{ -7 }&9\\& & \color{orangered}{0} & \\ \hline &3&\color{orangered}{-7}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -7 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&3&-7&9\\& & 0& \color{blue}{0} \\ \hline &3&\color{blue}{-7}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ 0 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrr}0&3&-7&\color{orangered}{ 9 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{3}&\color{blue}{-7}&\color{orangered}{9} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 3x-7 } $ with a remainder of $ \color{red}{ 9 } $.