The synthetic division table is:
$$ \begin{array}{c|rrr}0&-2&9&-18\\& & 0& \color{black}{0} \\ \hline &\color{blue}{-2}&\color{blue}{9}&\color{orangered}{-18} \end{array} $$The solution is:
$$ \frac{ -2x^{2}+9x-18 }{ x } = \color{blue}{-2x+9} \color{red}{~-~} \frac{ \color{red}{ 18 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&-2&9&-18\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ -2 }&9&-18\\& & & \\ \hline &\color{orangered}{-2}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -2 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-2&9&-18\\& & \color{blue}{0} & \\ \hline &\color{blue}{-2}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 9 } + \color{orangered}{ 0 } = \color{orangered}{ 9 } $
$$ \begin{array}{c|rrr}0&-2&\color{orangered}{ 9 }&-18\\& & \color{orangered}{0} & \\ \hline &-2&\color{orangered}{9}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 9 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-2&9&-18\\& & 0& \color{blue}{0} \\ \hline &-2&\color{blue}{9}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -18 } + \color{orangered}{ 0 } = \color{orangered}{ -18 } $
$$ \begin{array}{c|rrr}0&-2&9&\color{orangered}{ -18 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{-2}&\color{blue}{9}&\color{orangered}{-18} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -2x+9 } $ with a remainder of $ \color{red}{ -18 } $.