The synthetic division table is:
$$ \begin{array}{c|rrr}0&-9&18&5\\& & 0& \color{black}{0} \\ \hline &\color{blue}{-9}&\color{blue}{18}&\color{orangered}{5} \end{array} $$The solution is:
$$ \frac{ -9x^{2}+18x+5 }{ x } = \color{blue}{-9x+18} ~+~ \frac{ \color{red}{ 5 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrr}\color{blue}{0}&-9&18&5\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}0&\color{orangered}{ -9 }&18&5\\& & & \\ \hline &\color{orangered}{-9}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -9 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-9&18&5\\& & \color{blue}{0} & \\ \hline &\color{blue}{-9}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 18 } + \color{orangered}{ 0 } = \color{orangered}{ 18 } $
$$ \begin{array}{c|rrr}0&-9&\color{orangered}{ 18 }&5\\& & \color{orangered}{0} & \\ \hline &-9&\color{orangered}{18}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 18 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrr}\color{blue}{0}&-9&18&5\\& & 0& \color{blue}{0} \\ \hline &-9&\color{blue}{18}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 5 } + \color{orangered}{ 0 } = \color{orangered}{ 5 } $
$$ \begin{array}{c|rrr}0&-9&18&\color{orangered}{ 5 }\\& & 0& \color{orangered}{0} \\ \hline &\color{blue}{-9}&\color{blue}{18}&\color{orangered}{5} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -9x+18 } $ with a remainder of $ \color{red}{ 5 } $.