The synthetic division table is:
$$ \begin{array}{c|rrrr}0&-64&0&3&-28\\& & 0& 0& \color{black}{0} \\ \hline &\color{blue}{-64}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{-28} \end{array} $$The solution is:
$$ \frac{ -64x^{3}+3x-28 }{ x } = \color{blue}{-64x^{2}+3} \color{red}{~-~} \frac{ \color{red}{ 28 } }{ x } $$Step 1 : Write down the coefficients of the dividend into division table.Put the zero at the left.
$$ \begin{array}{c|rrrr}\color{blue}{0}&-64&0&3&-28\\& & & & \\ \hline &&&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrrr}0&\color{orangered}{ -64 }&0&3&-28\\& & & & \\ \hline &\color{orangered}{-64}&&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ \left( -64 \right) } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&-64&0&3&-28\\& & \color{blue}{0} & & \\ \hline &\color{blue}{-64}&&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 0 } + \color{orangered}{ 0 } = \color{orangered}{ 0 } $
$$ \begin{array}{c|rrrr}0&-64&\color{orangered}{ 0 }&3&-28\\& & \color{orangered}{0} & & \\ \hline &-64&\color{orangered}{0}&& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 0 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&-64&0&3&-28\\& & 0& \color{blue}{0} & \\ \hline &-64&\color{blue}{0}&& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ 3 } + \color{orangered}{ 0 } = \color{orangered}{ 3 } $
$$ \begin{array}{c|rrrr}0&-64&0&\color{orangered}{ 3 }&-28\\& & 0& \color{orangered}{0} & \\ \hline &-64&0&\color{orangered}{3}& \end{array} $$Step 6 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 0 } \cdot \color{blue}{ 3 } = \color{blue}{ 0 } $.
$$ \begin{array}{c|rrrr}\color{blue}{0}&-64&0&3&-28\\& & 0& 0& \color{blue}{0} \\ \hline &-64&0&\color{blue}{3}& \end{array} $$Step 7 : Add down last column: $ \color{orangered}{ -28 } + \color{orangered}{ 0 } = \color{orangered}{ -28 } $
$$ \begin{array}{c|rrrr}0&-64&0&3&\color{orangered}{ -28 }\\& & 0& 0& \color{orangered}{0} \\ \hline &\color{blue}{-64}&\color{blue}{0}&\color{blue}{3}&\color{orangered}{-28} \end{array} $$Bottom line represents the quotient $ \color{blue}{ -64x^{2}+3 } $ with a remainder of $ \color{red}{ -28 } $.