The synthetic division table is:
$$ \begin{array}{c|rrr}1&13&17&-22\\& & 13& \color{black}{30} \\ \hline &\color{blue}{13}&\color{blue}{30}&\color{orangered}{8} \end{array} $$The solution is:
$$ \frac{ 13x^{2}+17x-22 }{ x-1 } = \color{blue}{13x+30} ~+~ \frac{ \color{red}{ 8 } }{ x-1 } $$Step 1 : Write down the coefficients of the dividend into division table. Put the zero from $ x -1 = 0 $ ( $ x = \color{blue}{ 1 } $ ) at the left.
$$ \begin{array}{c|rrr}\color{blue}{1}&13&17&-22\\& & & \\ \hline &&& \end{array} $$Step 1 : Bring down the leading coefficient to the bottom row.
$$ \begin{array}{c|rrr}1&\color{orangered}{ 13 }&17&-22\\& & & \\ \hline &\color{orangered}{13}&& \end{array} $$Step 2 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 13 } = \color{blue}{ 13 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&13&17&-22\\& & \color{blue}{13} & \\ \hline &\color{blue}{13}&& \end{array} $$Step 3 : Add down last column: $ \color{orangered}{ 17 } + \color{orangered}{ 13 } = \color{orangered}{ 30 } $
$$ \begin{array}{c|rrr}1&13&\color{orangered}{ 17 }&-22\\& & \color{orangered}{13} & \\ \hline &13&\color{orangered}{30}& \end{array} $$Step 4 : Multiply by the number on the left, and carry the result into the next column: $ \color{blue}{ 1 } \cdot \color{blue}{ 30 } = \color{blue}{ 30 } $.
$$ \begin{array}{c|rrr}\color{blue}{1}&13&17&-22\\& & 13& \color{blue}{30} \\ \hline &13&\color{blue}{30}& \end{array} $$Step 5 : Add down last column: $ \color{orangered}{ -22 } + \color{orangered}{ 30 } = \color{orangered}{ 8 } $
$$ \begin{array}{c|rrr}1&13&17&\color{orangered}{ -22 }\\& & 13& \color{orangered}{30} \\ \hline &\color{blue}{13}&\color{blue}{30}&\color{orangered}{8} \end{array} $$Bottom line represents the quotient $ \color{blue}{ 13x+30 } $ with a remainder of $ \color{red}{ 8 } $.