Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{9}}{\sqrt{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{9}}{\sqrt{18}}\frac{\sqrt{18}}{\sqrt{18}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9\sqrt{2}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{18}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{9} } \cdot \sqrt{18} = 9 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{18} } \cdot \sqrt{18} = 18 $$ |
③ | Divide both numerator and denominator by 9. |