Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{65}}{\sqrt{13}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{65}}{\sqrt{13}}\frac{\sqrt{13}}{\sqrt{13}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{13\sqrt{5}}{13} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{5}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{13}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{65} } \cdot \sqrt{13} = 13 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \sqrt{13} } \cdot \sqrt{13} = 13 $$ |
③ | Divide both numerator and denominator by 13. |