Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{600}}{\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{600}}{\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{60}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 60 : \color{orangered}{ 6 } }{ 6 : \color{orangered}{ 6 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{10}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}10\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{600} } \cdot \sqrt{6} = 60 $$ Simplify denominator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{6} = 6 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 6 } $. |
④ | Remove 1 from denominator. |