Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{50}}{\sqrt{9}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{50}}{\sqrt{9}}\frac{\sqrt{9}}{\sqrt{9}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{2}}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 15 \sqrt{ 2 } : \color{blue}{ 3 } } { 9 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5\sqrt{2}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{9}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{50} } \cdot \sqrt{9} = 15 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{9} } \cdot \sqrt{9} = 9 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |