Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{5}\cdot(2\sqrt{6}-\sqrt{96})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\sqrt{5}\cdot(2\sqrt{6}-4\sqrt{6}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\sqrt{5}\cdot-2\sqrt{6} \xlongequal{ } \\[1 em] & \xlongequal{ }-2\sqrt{5\cdot6} \xlongequal{ } \\[1 em] & \xlongequal{ }-2\sqrt{30}\end{aligned} $$ | |
① | $$ - \sqrt{96} =
- \sqrt{ 4 ^2 \cdot 6 } =
- \sqrt{ 4 ^2 } \, \sqrt{ 6 } =
- 4 \sqrt{ 6 }$$ |
② | Combine like terms |