Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{3}\cdot(\sqrt{72}-3\sqrt{2})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\sqrt{3}\cdot(6\sqrt{2}-3\sqrt{2}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\sqrt{3}\cdot3\sqrt{2} \xlongequal{ } \\[1 em] & \xlongequal{ }3\sqrt{3\cdot2} \xlongequal{ } \\[1 em] & \xlongequal{ }3\sqrt{6}\end{aligned} $$ | |
① | $$ \sqrt{72} =
\sqrt{ 6 ^2 \cdot 2 } =
\sqrt{ 6 ^2 } \, \sqrt{ 2 } =
6 \sqrt{ 2 }$$ |
② | Combine like terms |