Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{2610000}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \sqrt{ 90000 \cdot 29 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}} \sqrt{ 90000 } \cdot \sqrt{ 29 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}300\sqrt{29}\end{aligned} $$ | |
① | Factor out the largest perfect square of 2610000. ( in this example we factored out $ 90000 $ ) |
② | Rewrite $ \sqrt{ 90000 \cdot 29 } $ as the product of two radicals. |
③ | The square root of $ 90000 $ is $ 300 $. |