Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{24}}{\sqrt{8}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{24}}{\sqrt{8}}\frac{\sqrt{8}}{\sqrt{8}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{3}}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{8}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{24} } \cdot \sqrt{8} = 8 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \sqrt{8} } \cdot \sqrt{8} = 8 $$ |
③ | Divide both numerator and denominator by 8. |