Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{216}}{9}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \sqrt{ 36 \cdot 6 } }{ 9 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ \sqrt{ 36 } \cdot \sqrt{ 6 } }{ 9 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6\sqrt{6}}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 6 \cdot \sqrt{ 6 } : \color{orangered}{ 3 }}{ 9 : \color{orangered}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{6}}{3}\end{aligned} $$ | |
① | Factor out the largest perfect square of 216. ( in this example we factored out $ 36 $ ) |
② | Rewrite $ \sqrt{ 36 \cdot 6 } $ as the product of two radicals. |
③ | The square root of $ 36 $ is $ 6 $. |
④ | Divide numerator and denominator by $ \color{orangered}{ 3 } $. |