Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{2}}{\sqrt{45}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{2}}{\sqrt{45}}\frac{\sqrt{45}}{\sqrt{45}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{10}}{45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{10}}{15}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{45}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{2} } \cdot \sqrt{45} = 3 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ \sqrt{45} } \cdot \sqrt{45} = 45 $$ |
③ | Divide both numerator and denominator by 3. |