Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{15}}{\sqrt{27}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{15}}{\sqrt{27}}\frac{\sqrt{27}}{\sqrt{27}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{9\sqrt{5}}{27} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{5}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{27}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{15} } \cdot \sqrt{27} = 9 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \sqrt{27} } \cdot \sqrt{27} = 27 $$ |
③ | Divide both numerator and denominator by 9. |