Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{12}+\sqrt{75}+\sqrt{96}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}2\sqrt{3}+5\sqrt{3}+4\sqrt{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}7\sqrt{3}+4\sqrt{6}\end{aligned} $$ | |
① | $$ \sqrt{12} =
\sqrt{ 2 ^2 \cdot 3 } =
\sqrt{ 2 ^2 } \, \sqrt{ 3 } =
2 \sqrt{ 3 }$$ |
② | $$ \sqrt{75} =
\sqrt{ 5 ^2 \cdot 3 } =
\sqrt{ 5 ^2 } \, \sqrt{ 3 } =
5 \sqrt{ 3 }$$ |
③ | $$ \sqrt{96} =
\sqrt{ 4 ^2 \cdot 6 } =
\sqrt{ 4 ^2 } \, \sqrt{ 6 } =
4 \sqrt{ 6 }$$ |
④ | Combine like terms |