Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{12}}{6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \sqrt{ 4 \cdot 3 } }{ 6 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ \sqrt{ 4 } \cdot \sqrt{ 3 } }{ 6 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{3}}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 2 \cdot \sqrt{ 3 } : \color{orangered}{ 2 }}{ 6 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{\sqrt{3}}{3}\end{aligned} $$ | |
① | Factor out the largest perfect square of 12. ( in this example we factored out $ 4 $ ) |
② | Rewrite $ \sqrt{ 4 \cdot 3 } $ as the product of two radicals. |
③ | The square root of $ 4 $ is $ 2 $. |
④ | Divide numerator and denominator by $ \color{orangered}{ 2 } $. |