Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{112}}{10}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{ \sqrt{ 16 \cdot 7 } }{ 10 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{ \sqrt{ 16 } \cdot \sqrt{ 7 } }{ 10 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{7}}{10} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 4 \cdot \sqrt{ 7 } : \color{orangered}{ 2 }}{ 10 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{7}}{5}\end{aligned} $$ | |
① | Factor out the largest perfect square of 112. ( in this example we factored out $ 16 $ ) |
② | Rewrite $ \sqrt{ 16 \cdot 7 } $ as the product of two radicals. |
③ | The square root of $ 16 $ is $ 4 $. |
④ | Divide numerator and denominator by $ \color{orangered}{ 2 } $. |