Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{10}}{\sqrt{45}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{10}}{\sqrt{45}}\frac{\sqrt{45}}{\sqrt{45}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{15\sqrt{2}}{45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{45}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{10} } \cdot \sqrt{45} = 15 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{45} } \cdot \sqrt{45} = 45 $$ |
③ | Divide both numerator and denominator by 15. |