Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{45}}{\sqrt{20}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{45}}{\sqrt{20}}\frac{\sqrt{20}}{\sqrt{20}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30}{20} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 30 : \color{orangered}{ 10 } }{ 20 : \color{orangered}{ 10 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{20}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{45} } \cdot \sqrt{20} = 30 $$ Simplify denominator. $$ \color{blue}{ \sqrt{20} } \cdot \sqrt{20} = 20 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 10 } $. |