Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{\sqrt{3}}{\sqrt{125}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{\sqrt{3}}{\sqrt{125}}\frac{\sqrt{125}}{\sqrt{125}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{15}}{125} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{15}}{25}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{125}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \sqrt{3} } \cdot \sqrt{125} = 5 \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ \sqrt{125} } \cdot \sqrt{125} = 125 $$ |
③ | Divide both numerator and denominator by 5. |