Tap the blue circles to see an explanation.
$$ \begin{aligned}\sqrt{8}^2+\sqrt{16}^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(2\sqrt{2})^2+4^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}8+16 \xlongequal{ } \\[1 em] & \xlongequal{ }24\end{aligned} $$ | |
① | $$ \sqrt{8} =
\sqrt{ 2 ^2 \cdot 2 } =
\sqrt{ 2 ^2 } \, \sqrt{ 2 } =
2 \sqrt{ 2 }$$ |
② | $$ \sqrt{16} = 4 $$ |
③ | $$ (2\sqrt{2})^2 =
2^{ 2 } \cdot \sqrt{2} ^ { 2 } =
2^{ 2 } \sqrt{2} ^2 =
2^{ 2 } \lvert 2 \rvert =
8 $$$ 4 ^ 2 = 16 $ |