Tap the blue circles to see an explanation.
$$ \begin{aligned}7\sqrt{78125}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}7\cdot \sqrt{ 15625 \cdot 5 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}7\cdot \sqrt{ 15625 } \cdot \sqrt{ 5 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}7\cdot125 \sqrt{ 5 } \xlongequal{ } \\[1 em] & \xlongequal{ }875\sqrt{5}\end{aligned} $$ | |
① | Factor out the largest perfect square of 78125. ( in this example we factored out $ 15625 $ ) |
② | Rewrite $ \sqrt{ 15625 \cdot 5 } $ as the product of two radicals. |
③ | The square root of $ 15625 $ is $ 125 $. |