Tap the blue circles to see an explanation.
$$ \begin{aligned}6\sqrt{242}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6\cdot \sqrt{ 121 \cdot 2 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6\cdot \sqrt{ 121 } \cdot \sqrt{ 2 } \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}6\cdot11 \sqrt{ 2 } \xlongequal{ } \\[1 em] & \xlongequal{ }66\sqrt{2}\end{aligned} $$ | |
① | Factor out the largest perfect square of 242. ( in this example we factored out $ 121 $ ) |
② | Rewrite $ \sqrt{ 121 \cdot 2 } $ as the product of two radicals. |
③ | The square root of $ 121 $ is $ 11 $. |