Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{-1+3\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{-1+3\sqrt{5}}\frac{-1-3\sqrt{5}}{-1-3\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4-12\sqrt{5}}{1+3\sqrt{5}-3\sqrt{5}-45} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4-12\sqrt{5}}{-44} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-1-3\sqrt{5}}{-11} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{1+3\sqrt{5}}{11}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ -1- 3 \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 } \cdot \left( -1- 3 \sqrt{5}\right) = \color{blue}{4} \cdot-1+\color{blue}{4} \cdot- 3 \sqrt{5} = \\ = -4- 12 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( -1 + 3 \sqrt{5}\right) } \cdot \left( -1- 3 \sqrt{5}\right) = \color{blue}{-1} \cdot-1\color{blue}{-1} \cdot- 3 \sqrt{5}+\color{blue}{ 3 \sqrt{5}} \cdot-1+\color{blue}{ 3 \sqrt{5}} \cdot- 3 \sqrt{5} = \\ = 1 + 3 \sqrt{5}- 3 \sqrt{5}-45 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 4. |
⑤ | Multiply both numerator and denominator by -1. |